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Abstract

We present a Galerkin-free, proper orthogonal decomposition (POD)-assisted computational methodology for

numerical simulations of the long-term dynamics of the incompressible Navier–Stokes equations. The approach is

based on the ‘‘equation-free’’ framework: we use short, appropriate initialized bursts of full direct numerical simula-

tions (DNS) of the Navier–Stokes equations to observe, estimate, and accelerate, through ‘‘projective integration’’,

the evolution of the flow dynamics. The main assumption is that the long-term dynamics of the flow lie on a low-dimen-

sional, attracting, and invariant manifold, which can be parametrized, not necessarily spanned, by a few POD basis

functions. We start with a discussion of the consistency and accuracy of the approach, and then illustrate it through

numerical examples: two-dimensional periodic and quasi-periodic flows past a circular cylinder. We demonstrate that

the approach can successfully resolve complex flow dynamics at a reduced computational cost and that it can

capture the long-term asymptotic state of the flow in cases where traditional Galerkin-POD models fail. The approach

trades the overhead involved in developing POD-Galerkin and POD-nonlinear Galerkin codes, for the repeated (yet

short, and on demand) use of an existing full DNS simulator. Moreover, since in this approach the POD modes are

used to observe rather than span the true system dynamics, the computation is much less sensitive than POD-Galerkin

to values of the system parameters (e.g., the Reynolds number) and the particular simulation data ensemble used to

obtain the POD basis functions.
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1. Introduction

The ‘‘traditional’’ proper orthogonal decomposition (POD) is a methodology that first identifies the

few most energetic modes in a time-dependent system, and subsequently provides a means of obtaining

a low-dimensional description of the system�s dynamics [4]. The method of snapshots, first proposed in
[40] for flow systems, is a particularly effective and easy to implement approach for obtaining POD basis

sets from an ensemble of signals. POD has been successfully implemented in conjunction with experimen-

tal (e.g. [1,7,9,18,19]) as well as with numerical studies (e.g. [2,6,8,27,32,38,40]) in thermal convection,

shear layers, cavity flows and external flows, to mention just a few. In the aforementioned works,

low-dimensional system dynamical systems are obtained directly from the Galerkin projection of the gov-

erning equations on the empirical basis set (the POD modes). However, it is well known that reduced

systems resulting from truncated Galerkin projections may result, after long-term integration, in spurious

aymptotic states (e.g. [11,31,39]). In [31] it is argued that this is due to the fact that the manifold spanned
by the POD modes is, in general, not an invariant manifold of the Navier–Stokes operator. A technique

based on spectral viscosity convolution operator was proposed in [39] to correct the long-term behavior of

Galerkin POD models.

In this paper, we propose a Galerkin-free POD-assisted modeling methodology, which employs ‘‘equa-

tion-free’’ [41,25,24] projective integration [13,14,33]. The equation-free framework is designed for the effi-

cient coarse-grained computational study of complex, multi-scale problems. The basic idea is to operate at

two levels: (a) design and perform short-time numerical experiments with ‘‘the best available’’ microscopic

model, and subsequently (b) use the numerical results of such microscopic computations to estimate quan-
tities (residuals, action of Jacobians) required in numerical computations of the (unavailable) macroscopic

equations for the coarse-grained system behavior [25,24]. Thus the closures required to obtain explicit mac-

roscopic equations are estimated on demand; numerical analysis tasks (such as integration, solution of linear

and nonlinear equations and eigenanalysis) are performed by acting on the microscopic simulation directly

(equation-free) taking extensive advantage of matrix-free iterative linear algebra. This framework has been

applied to a variety of problems, ranging from bifurcation analysis of complex systems to homogenization

of random media [13,17,25,26,29,30,34,41].

In this paper we illustrate the use of the equation-free approach to incompressible Navier–Stokes sim-
ulations. In this context, the DNS simulator plays the role of the ‘‘detailed, microscopic’’ model; the

coarse-grained dynamics are the long-term dynamics of the DNS, which are assumed to lie on a low-

dimensional, attracting manifold. This manifold is parametrized by a relatively small number of variables

(in our case we use the leading POD modes to parametrize the manifold). The ‘‘unavailable coarse-

grained’’ equations are the dynamic equations for the evolution of the coefficients of the projection of

the full DNS solution on this manifold on our observation variables (the leading POD modes). The normal

procedure for obtaining these equations would be to perform a Galerkin projection of the Navier–Stokes

on the POD basis; truncating this Galerkin projection would give an approximation of these equations.
What we are after is not such a truncated POD-Galerkin; we want to observe the projection – on the

hyperplane spanned by the first few POD modes – of the evolution of the true solution on the slow man-

ifold. This manifold can be thought of as a graph of function from the first few (‘‘governing’’ or ‘‘master’’)

POD modes to the remaining ones. If this function were explicitly available, one could substitute the com-

ponents of the long-term solution on higher-order POD modes as functions of the low-order ones in a

POD Galerkin expansion, and obtain the ‘‘correct’’ low-dimensional nonlinear POD-Galerkin model.

Our equation-free approach tries to solve this model without deriving it in closed form. Full DNS sim-

ulations are used to estimate the right-hand side (RHS) of this ‘‘correct’’ nonlinear Galerkin model on
demand; the particular equation-free acceleration technique we will illustrate is projective integration.

Since the equations of change are estimated rather than obtained from a Galerkin formalism, we consider

this a Galerkin-free procedure.
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The paper is organized as follows: In Section 2 we present the DNS/POD formulation for incompress-

ible flow dynamics. In Section 3 the algorithm for the equation-free/Galerkin-free POD model is pre-

sented, and the consistency and accuracy of the method are demonstrated. Numerical results follow in

Section 4, where two-dimensional flows past a circular cylinder are used as the illustrative prototype.

We first verify the error estimates from Section 3 through short-time integration, and subsequently pres-
ent long-term integration results to verify that the new model is able to capture the correct asymptotic

state. An additional, dynamically more complicated quasi-periodic flow example is also presented, show-

ing that multiple flow frequencies can be successfully resolved. We summarize the results in Section 5,

with a discussion of open issues.
2. Computational formulation for incompressible flows

2.1. Navier–Stokes equations and discretization

We consider the incompressible Navier–Stokes equations
r � v ¼ 0; ð1Þ
ov 1
ot
þ ðv � rÞv ¼ �rp þ

Re
r2v; ð2Þ
where v ” v(t,x) is the velocity fields and p ” p(t,x) the pressure, for x2X�Rd (d = 1,2,3) and t2R+. The

equations are properly scaled by a characteristic velocity U and a characteristic length L, and the Reynolds

number is defined as Re = UL/m, where m is the kinematic viscosity. We assume that appropriate boundary

conditions are imposed on the boundary oX�Rd�1, together with initial condition v0 ” v(0,x)2X. We also
define an inner product (f,g) = �Xf(x)g(x)dx, and a norm ifi = (f, f)1/2.

Eqs. (1) and (2) define an evolution process of the velocity field
ov

ot
ðt; xÞ ¼ fðt; vðt;xÞÞ ð3Þ
characterized by a solution operator {s(t)}, which forms a semigroup v(t, Æ) = s(t)v(0, Æ), constrained by the

pressure field to satisfy the divergence-free condition (1).

In order to solve the Navier–Stokes equations, we introduce a computational mesh X d
h that discretizes

X � Rd, where h > 0 is the maximum mesh spacing. We adopt a numerical scheme that is consistent, accu-

rate and stable. Such a scheme defines a discrete evolution process for u(t,x), the numerical solution of

v(t,x), i.e.,
uðtnþ1; �Þ ¼ uðtn; �Þ þ dt � Uðtn; dt; h; un; unþ1; . . .Þ; ð4Þ
where dt is the time step such that tn+1 = tn + dt, and the function U(dt,h; Æ ) is the incremental function.

Hereafter, we adopt the notation gn ” g(tn). Consistency of the discrete scheme requires that
lim
dt;h!0

Uðtn; dt; h; vn; vnþ1; . . .Þ ¼ fðtn; vnÞ: ð5Þ
We also assume that the local truncation error (LTE) of such scheme is of the order O(dtp,hq), i.e.,
vnþ1ðxÞ ¼ vnðxÞ þ dt � Uðtn; dt; h; vn; vnþ1; . . .Þ þ dt � �f ; ð6Þ

where
�f � Oðdtp; hqÞ; p; q P 1:
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2.2. Proper orthogonal decomposition basics

The POD procedure extracts an empirical orthogonal basis using a modal decomposition from an

ensemble of signals (computational or experimental). It is a linear procedure which produces a useful re-

duced basis (which, under appropriate conditions, is an optimal one). In the POD framework one can rep-
resent evolving flow fields in the form
uðt; xÞ ¼
X

k

akðtÞ/kðxÞ; ð7Þ
where f/kðxÞg
1
k¼0 is the basis extracted from the eigenvalue problem for the temporal modes fakðtÞg1k¼0,
Z

A
Cðt; t0Þakðt0Þdt0 ¼ kkakðtÞ; t 2 A; 8k; ð8Þ
and A is a specified time interval. Here C(t, t 0) is the correlation function defined as
Cðt; t0Þ ¼
Z
X
uðt; xÞ � uðt0; xÞdx: ð9Þ
The POD basis in space is determined by
/kðxÞ ¼
Z

A
akðtÞuðt; xÞdt 8k: ð10Þ
These basis functions are normalized so that i/ii = 1. The non-negative definiteness of the velocity corre-

lation function (9) assures that k P 0 and we order the eigenvalues by ki P ki+1. After determining the POD

basis, the POD expansion coefficients can be recovered via ak(t) = (u(t,x),/k(x)). By denoting a(t) = {ak(t)},

we define a restriction operator P such that
aðtÞ ¼ Puðt; xÞ � fðuðt; xÞ;/kðxÞÞ; t 2 A; 8kg; ð11Þ

and a lifting operator Q such that
uðt; xÞ ¼ QaðtÞ �
X

k

akðtÞ/kðxÞ; t 2 Rþ: ð12Þ
Obviously, both P and Q are linear operators and PQa ¼ a. The evolution of the POD coefficients a(t) is

governed by a process
da

dt
ðtÞ ¼ gðt; aðtÞÞ; ð13Þ
where the explicit form of the RHS terms is unknown. In the standard truncated POD-Galerkin procedure,

the RHS terms are derived from the Navier–Stokes equations via a Galerkin approach, resulting in a (pos-

sibly large) set of coupled ODEs.

Let us denote the finite-term POD expansion as
uKðt; xÞ ¼
XK

k¼1

akðtÞ/kðxÞ; ð14Þ
and correspondingly, the truncated restriction and truncated lifting operators as PK and QK , respectively. In

other words, uK ¼ IKu � QKPKu. The convergence of the POD expansion is assumed to be
ku� uKk ! K�c as K ! 1; ð15Þ
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where the real number c > 0 quantifies the convergence rate. We remark that the theoretical estimate for

such rate is hard to obtain, and it depends strongly on the correlation function C(t, t 0) and the smoothness

of the target function u.
3. The equation-free/Galerkin-free POD model

Experience with ‘‘traditional’’ POD-Galerkin truncations show that – depending on the application, the

parameter regime and the original data set – they can be extremely successful and that they can also fail

miserably (especially in predicting long-term dynamics). There are, of course, technical difficulties involved

in writing down (for simple nonlinearities) or approximating via quadrature the RHS of the POD-Galerkin

truncation. Beyond these, however, an important reason for this potential failure is that the component of

the solution on the ‘‘higher’’ neglected POD modes is not zero: the hyperplane spanned by the first few POD
modes does not coincide with a true invariant slow manifold of the equation we want to solve. Using enough

POD modes to accurately span this ‘‘tail’’ of the solution and its effect on the low-POD-mode dynamics

gives rise to increasingly larger truncations, at cross-purposes with model reduction and simplification.

The main idea here is that a few POD modes can be used to parametrize the (assumed) low-dimensional

attracting slow manifold on which the long-term flow dynamics lie as opposed to spanning it. Assuming

a separation of time scales between a few ‘‘slow, master’’ POD modes and the remaining ‘‘fast, slave’’ ones,

after a transient has approached this manifold the components of the solution in the higher-order POD

modes become functions of the components in the lower-order ones. Normally, one would explicitly
approximate this function and use it (substitute it) in the low-POD mode equations as a ‘‘closure’’: a

way to obtain the effect of the high-POD modes on the dynamics of the low-POD ones. Such a closed

set of equations for the low modes is a nonlinear Galerkin, as opposed to the straight, linear Galerkin trun-

cation. Our approach uses bursts of full DNS to estimate the right hand sides of these ‘‘nonlinear Galerkin’’

ODEs on demand, and accelerate their numerical integration, without approximating them in closed form.

In this paper we will illustrate the equation-free implementation of a particular continuum numerical task:

numerical integration, which in an equation-free context is called ‘‘projective integration’’; most other con-

tinuum numerical tasks (fixed point computation, linearized stability analysis, controller design and opti-
mization) can also in principle be implemented ‘‘equation-free’’ [25].

Equation-free single step projective integration, starting at t = tn and ending at t = tn+1, consists, in gen-

eral, of the following main components:

� nf P 1 steps of fine-scale computation (reported at time step dt where we define Dtf ¼ nfdt and tn
c ¼

tn þ Dtf );

� restriction to coarse grained variables and estimation of the time-derivatives of their evolution;

� one step of coarse-grained projective integration with step size Dtc;
� and lifting from the projected values of the coarse grained variables to consistent fine-scale initial

conditions.

The coarse step Dtc P dt will be usually chosen to be Dtc = ncdt where nc P 1. The global time step is

Dt = tn+1 � tn = Dtf + Dtc = (nf + nc)dt. Fig. 1 is a graphical illustration of the notation. Variations of the

approach, including cases where the ‘‘fine scale’’ simulator is a stochastic (kinetic Monte Carlo based) or

a molecular dynamics-based one can be found in [35,24,33].

In our case, the ‘‘inner, fine scale’’ simulator is the fully resolved DNS discretization. The ‘‘coarse-
grained’’ model is the unavailable-in-closed-form nonlinear Galerkin set of ODEs describing the evolution

of the long-term flow dynamics on the slow manifold; the dynamics are observed on the first few low-POD

modes which parametrize this manifold.
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Fig. 1. Sketch of a projective integration over one time step.
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Specifically, our POD-assisted projective integration consists of the following steps: Given an ” a(tn),

1. Lifting: At t = tn, generate the flow field uKðtn; xÞ ¼ QKaðtnÞ.
2. Fine-scale computation: Resolve the Navier–Stokes equations (1) and (2) for a short period of time, i.e.,

vðt; �Þ ¼ sðtÞvðtn; �Þ for tn
6 t 6 tn

c ¼ tn þ nfdt. Such computation is conducted via scheme (4) with a small

time step dt. Here nf P 1 such that Dtf = nfdt � tR � tM, where tR is the local relaxation time (approach
to the slow manifold) which is assumed to be much shorter than tM, the typical coarse-grained flow time

scales (13).

3. Restriction: Evaluate the POD coefficients aðtÞ ¼ PKuðt; �Þ for tn
6 t 6 tn

c , and estimate the time deriva-

tive da=dt at t ¼ tn
c .

4. Projective integration: Integrate Eq. (13) to tn+1 by standard ODE techniques to obtain a(tn+1). The time

step here is Dtc � ncdt ¼ tnþ1 � tn
c , where nc P nf P 1.

5. Return to step 1 until the final integration time is reached.

We now present a detailed discussion of each of the steps.
3.1. Full DNS computation

Any conventional numerical method satisfying (4)–(6) can be employed to resolve equations (1) and (2).

In this paper, we employ the high-order spectral/hp element method, a well-developed method that com-

bines the high accuracy of spectral methods and the flexibility in handling complex geometry of finite ele-

ment methods [21]. The spatial discretization is sufficiently fine to guarantee resolution independent

solutions. A high-order splitting scheme is employed to integrate the incompressible Navier–Stokes equa-

tions [20]; we typically chose the third-order scheme in time, i.e., p = 3 in (6).
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3.2. Restriction and lifting

We employ the snapshot method formulation to extract the POD bases. In this method, the time average

defined in (8) is replaced by an average of an ensemble of flow field snapshots within a time interval J. Spe-

cifically, the vectors {/k(x)} in (10) are determined by
/kðxÞ ¼
XN

i¼1

akðtiÞuðti; xÞ 8k; ð16Þ
where ftigN
i¼1 � J denotes the ensemble of N number of snapshots within the time interval J and {ak} are

obtained by solving (8).

Once the POD basis functions {/k(x)} are determined from (16), we can restrict a given flow field u(t,x)

for any given t to obtain its POD coefficients {ak}, via (11). These coefficients will be further integrated in

time by the ‘‘projective integration’’ technique, described in the following section. The lifting procedure is
the reverse, i.e., for a given set of numerically computed POD coefficients {ak(t)} at a time t, we can con-

struct the corresponding flow field by using (12).
3.3. Projective integration

As discussed above, the RHS g(t;a(t)) of equations (13) can be obtained from the Navier–Stokes equa-

tions through a Galerkin projection. Such a procedure may result in rather complicated forms and often

suffers from spurious long-term dynamics (see [11,39]). Our ‘‘equation-free’’ approach, which does not re-
quire the explicit form of the RHS of (13), can circumvent these difficulties by using ‘‘just enough’’ full

DNS. Having already performed a short DNS simulation run, our procedure is as follows:

� Obtain the POD variable time series aðtÞ ¼ Puðt; xÞ for tn
6 t 6 tn

c ¼ tn þ nf dt.
� Approximate the RHS of (13) at t ¼ tn

c , here through
gðtn
cÞ ¼

Xne

j¼0

ajaðtjÞ ¼
da

dt
ðtn

cÞ þOðdtJf Þ; ð17Þ
where 1 6 ne 6 nf, tj ¼ tn
c � j � dt, and Jf denotes the order of the approximation. fajgne

j¼0 is a set of con-

sistent coefficients such that
P

ajf ðtjÞ ¼ df =dtðtn
cÞ þOðdtJf Þ.

� Once the RHS of (13) is estimated numerically, one can effectively integrate it via standard ODE solvers.

For instance, given a coarse time step Dtc ” ncdt where nc P 1, such that

tnþ1 ¼ tn
c þ Dtc ¼ tn þ ðnf þ ncÞdt, the single step forward Euler projective integrator takes the form
aðtnþ1Þ ¼ aðtn
cÞ þ Dtc � gðtn

cÞ þOðDt2cÞ: ð18Þ
Other integration schemes – possibly implicit ones – can be used for higher-order accuracy and/or better

stability properties. For instance, we can employ the following scheme:
aðtnþ1Þ ¼ aðtn
cÞ þ

XJc

k¼1

ðDtcÞk

k!
oðk�1Þ

otk�1
gðtn

cÞ þOðDtJcþ1
c Þ: ð19Þ
The higher-order temporal derivatives of g(t) are approximated in a way similar to (17). Note that (19) is a

high-order single-step method. For projective integrations, multi-step methods such as Adam-Bashforth

type integrators have been studied (cf. [33]), and they can be used here as well. Remarkably, for problems

with separation of time scales, estimating the RHS from accurate results of detailed integration may result

in stability for much longer explicit projective steps (commensurate with the slow dynamics [13]). In the

following analysis, we will focus on single-step methods (19).
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3.4. Consistency and accuracy

Here we present an analysis of the consistency and accuracy of the equation-free POD-assisted method.

For clarity, we suppress the symbol x and use the first-order Euler forward projective integrator in (18). By

construction, the solution after one global time step Dt can be written as
unþ1
K � uKðtnþ1Þ ¼ QKaðtnþ1Þ ¼ QK ½aðtn

cÞ þ Dtc � gðtn
cÞ þOðDt2cÞ�

¼ QK ½aðtn
cÞ þ Dtc

X
j

ajaðtjÞ þOðDt2cÞ� ¼ QKPK ½uðtn
cÞ þ Dtc

X
j

ajuðtjÞ þOðDt2cÞ�

¼ IK uðtnÞ þ dt �
Xnf

m¼1

Uðtn
m; uÞ þ Dtc

ou

ot
ðtn

cÞ þOðdtJf Þ þOðDt2cÞ
" #

¼ un
K þ DtWðtn; u; . . .Þ; ð20Þ
where tn
m ¼ tn þ ðm � 1Þ � dt and the global incremental function is defined as
Wðtn; u; . . .Þ ¼ 1

Dt
IK dt �

Xnf

m¼1

Uðtm; uÞ þ Dtc
ou

ot
ðtn

cÞ þOðdtJf Þ þOðDt2cÞ
" #

: ð21Þ
In the limit of Dt ! 0, ftn
mg

nf

m¼1; tn
c ! tn and dt;Dtc ! 0. Since Dt = nf Ædt + Dtc, we have
lim
Dt;h!0

Wðtn; v; . . .Þ ¼ 1

Dt
IK dt � nf � fðtn; vnÞ þ Dtc

ov

ot
ðtnÞ þOðdtJf Þ þOðDt2cÞ

� �
¼ IK ½fðtn; vnÞ�; ð22Þ
where we have used property (5). Assuming the POD convergence (15), we immediately have the consis-

tency of the POD-assisted projective integration method
lim
Dt;h!0;K!1

Wðtn; vÞ ¼ fðtn; vnÞ: ð23Þ
To obtain the LTE, we start with the exact solution of vn(x) at time tn and evolve the scheme by one
global time step Dt to obtain
~unþ1
K ¼ vn

K þ Dt �Wðtn; vÞ ¼ IK vðtnÞ þ dt �
Xnf

m¼1

ðUðtm; vÞ þ �f Þ þ Dtc
ov

ot
ðtn

cÞ þOðdtJf Þ þOðDt2cÞ
" #

¼ IK vðtn
cÞ þ nfdt � �f þ Dtc

ov

ot
ðtn

cÞ þOðdtJf Þ þOðDt2cÞ
� �

¼ vKðtnþ1Þ þIK ½Dtf � �f þOðdtJf Þ þOðDt2cÞ� � vKðtnþ1Þ þ sK : ð24Þ
Since O(Dtf) � O(Dt) (in favorable cases, O(Dtf) � O(Dt)) and O(Dtc) � O(Dt), the LTE measured by the

POD variables vK is
�K � 1

Dt
k~unþ1

K � vKðtnþ1Þk ¼ 1

Dt
ksKk � �f þOðdtJf �1;DtcÞ; ð25Þ
where �f � O(dtp,hq) is the error of the Navier–Stokes solver.

If we measure the LTE against the flow field v, instead of the POD projected field vK, then
� ¼ 1

Dt
k~unþ1

K � vðtnþ1Þk 6
1

Dt
ðk~unþ1

K � vKðtnþ1Þk þ kvKðtnþ1Þ � vðtnþ1ÞkÞ � �K þO
K�c

Dt

� �
ð26Þ
where O(K�c) is the error of POD projection from (15).

In summary, the truncation error of the POD-assisted projective integration method proposed in this
paper, with an integrator of order OðDtJc

c Þ as in (19), is



576 S. Sirisup et al. / Journal of Computational Physics 207 (2005) 568–587
� � O dtp; hq; dtJf �1;DtJc
c ;

K�c

Dt

� �
: ð27Þ
Note that the error depends on Dt (or Dtc since Dtc/Dt � 1) non-monotonically, when all other parameters

are fixed. When the fine computation of Navier–Stokes equations is conducted with high accuracy and

dt� Dt, the two dominant error contributions stem from OðDtJc
c Þ and OðK�c=DtÞ. These two terms ‘‘com-

pete’’ in opposite ways with respect to the size of Dt, e.g., decreasing Dt will decrease the former term, but

amplify the latter one. Clearly, a fast decay of the POD spectrum will result in a dominant error contribu-

tion of the term OðDtJc
c Þ.
4. Numerical results

In this section we present numerical results of the equation-free POD model for incompressible Navier–

Stokes equations. The prototype flow considered here is the two-dimensional flow past a circular cylinder

with diameter D = 1. The Reynolds number is based on D and fixed at Re = 100. The computational do-

main is shown in Fig. 2. Uniform inflow u = (1,0) is prescribed on the left, top and bottom boundaries.

The outflow condition (zero Neumann) is specified on the right exit, and a no-slip condition is enforced

on the surface of the cylinder. A history point is placed at x = 2.5,y = �0.5, where we record the time evo-
lution of velocities. A high-resolution spectral/hp element method is employed to solve the Navier–Stokes

equations [21]. The domain is discretized into 412 triangular elements, where eighth-order Jacobi polyno-

mial basis are used to obtain resolution independent solution. A third-order splitting scheme is employed in

time [20], with time step dt = 0.001. Such fine discretizations in space and time make the errors from Na-

vier–Stokes solution subdominant compared to other error terms in (27), in most cases presented below.

Also, we remark that there is no need to conduct the projective integration for the pressure field, because

in splitting schemes the pressure serves as a constraint to satisfy the divergence-free condition and is not

required upon initialization of the flow velocity field.

4.1. Error estimates verification

At Reynolds number Re = 100, the flow becomes periodic with period T 	 5.824. The POD modes {/
(x)} are obtained from direct simulation in the neighborhood of this limit cycle by the method-of-snap-
x

y

-10 0 10 20

-5

0

5

Fig. 2. Computational domain for flow past a circular cylinder.
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shots; we typically use 64 snapshots distributed over one oscillation period, and K = 11 modes are kept in

the finite-term expansion (14). We state once more that the results of POD-Galerkin methods may crucially

depend on the particular ensemble used for POD mode extraction.

The error estimate in (27) suggests that the dominant error contribution comes from the coarse integra-

tion ðOðDtJc
c ÞÞ and the POD approximation error (O(K�c/Dt)). The rest of the terms are subdominant as

Dt 
 dt. The overall error is non-monotonic with respect to the size of time step Dt. To verify numerically

the LTE error estimate (27), we conduct the equation-free POD projective integration, starting from the

‘‘exact’’ flow field u(t,x), for one global time step Dt, and compute the error of the solution against the ‘‘ex-

act’’ solution at the new time level u(t + Dt,x). Since the ‘‘exact’’ solution u(t,x) is not available analytically,

we use the high resolution DNS solution v(t,x) to represent it, as the error from DNS is negligible.

Two errors are computed: the error compared to the ‘‘exact’’ flow field v, i.e., s � k~unþ1
K � vðtnþ1Þk, and

the error compared to the flow field reconstructed from a K-mode POD truncation vK, i.e.,

sK � k~unþ1
K � vKðtnþ1Þk. From the error estimates (25) and (27), we have
Table

Error

Jc

sK
s

Table

Local

Dt

T/8

T/16

T/32

T/64

T/128

T/256

The co
sK ¼ Dt � �K � OðDtJcþ1Þ; s ¼ Dt � � � OðDtJcþ1;K�cÞ; ð28Þ

where the subdominant error terms have been neglected.

In Table 1, the local errors sK and s are shown with fixed time step Dt = T/32 and different integration

order Jc. One can see that, as the order of projective integration increases, the error decreases. However, the

decrease of error in s slows down at higher-order Jc = 3,4. This is because at higher-order Jc the error term

OðDtJcþ1Þ in (28) becomes subdominant and the overall error reaches the dominant term O(K�c), which re-

mains constant in this case.

In Table 2, we show sK and s with fixed integration order Jc = 1,2 and different time steps. Both the er-

rors and the corresponding convergence rates are shown. We can see that the convergence rate of sK re-

mains constant equal to (Jc + 1), as predicted by (28), except at Jc = 2 and very small time steps when
the other errors (notably the spatial and temporal errors from DNS) contaminate the rate. On the other

hand, the errors in s converge with rate (Jc+1) only at large Dt and lower-order Jc = 1. At smaller time steps

the convergence saturates and the errors approach a constant value. Such saturation in errors is more evi-

dent for Jc = 2. In Fig. 3, both sK and s are plotted against the size of Dt, and we clearly observe the con-
1

after one step integration with different order of Jc(Dt = T/32)

1 2 3 4

7.9373(�2) 2.0632(�2) 8.9058(�3) 2.2198(�3)

8.0399(�2) 2.4282(�2) 1.5597(�2) 1.2995(�2)

2

errors sK and s for fixed integration order Jc = 1,2, with different time steps Dt

Jc = 1 Jc = 2

sK RK s R sK RK s R

1.1323(0) 1.90 1.1323(0) 1.90 6.9416(�1) 2.87 6.9429(�1) 2.85

3.0321(�1) 1.97 3.0339(�1) 1.95 9.5245(�2) 2.95 9.6126(�2) 2.44

7.7229(�2) 1.99 7.8283(�2) 1.76 1.2264(�2) 2.95 1.7730(�2) 0.47

1.9400(�2) 1.97 2.3190(�2) 0.77 1.5866(�3) 2.78 1.2683(�2) 0.01

4.9620(�3) 2.00 1.3617(�2) 0.10 2.3080(�4) 2.43 1.2683(�2) 0.00

1.2392(�3) – 1.2737(�2) – 4.2821(�5) – 1.2676(�2) –

nvergence rate R is defined as R(Dt) = ln[s(Dt)/s(Dt/2)]/ln2; RK is defined similarly.
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stant convergence rate of sK and the saturation of s. This observation is consistent with the error estimates

(28).

4.2. Periodic flows

To further examine the computational properties of the equation-free POD model, we use projective

integration to evolve the aforementioned problem over longer times. Again, at Re = 100, the flow is peri-

odic with period T 	 5.824. In the following results, the order of accuracy for the RHS estimate (17) is fixed

at second-order, i.e., Jf = 2.

In Figs. 4 and 5, we plot the results with the same fine integration steps (Dtf = T/32) and order of pro-

jective integrator (Jc = 2), but different projective integration time step at Dtc = T/64 and Dtc = T/16, respec-

tively. The number of POD modes used for observation and projective integration is fixed at K = 11. It is

seen that with relatively smaller projective time step Dtc = T/64, the results agree well with DNS (Fig. 4).
However, at larger projective step Dtc = T/16, the equation-free POD model becomes unstable, as shown

in Fig. 5. Under the same parameter settings of Fig. 5, the results become accurate and stable if we increase

the order of projective integration to Jc = 3, as shown in Fig. 6. In Fig. 7, we use the third-order projective

integrator and reduce the steps of fine integration to Dtf = T/78. Again, the solutions agree well with DNS

and they remain stable. In this case, the computational cost of the equation-free POD model is about 20%

of full-scale DNS. Fig. 8 shows the results with the same parameters as those in Fig. 4, except that here a

smaller number of POD modes (K = 5) is employed. We observe that the results are less accurate and a

weak instability has developed.
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These results suggest that a third-order projective integrator, in addition to its higher accuracy, has bet-

ter stability property than the second-order one. Also, the resolution of POD expansions, i.e., the number

of POD modes employed, has an effect both on the overall accuracy of the algorithm and its stability. We

remark that the complete analysis on the stability properties of the equation-free POD model for fluids re-

mains an open issue. For stability analysis of general projective integrations for ordinary differential equa-

tions, see [13].
4.3. Quasi-periodic flows

In this section, we examine the equation-free POD model for flows with two incommensurate frequen-

cies. At Reynolds number Re = 100, the natural frequency of the flow is fs = 1/T 	 0.17. We impose a time
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dependent inflow condition on the left boundary (see Fig. 2), u = (1 + 0.1 · sin(2pfit), 0). The forcing fre-

quency is fi = 1/Ti = 0.09; the interplay of the forcing and the natural frequencies gives rise to an apparently

quasiperiodic (possibly periodic of extremely high period) flow.

The POD basis function are extracted from 780 snapshots obtained through a simulation over a sam-

pling time interval of T̂ ¼ T � T i 	 66:13, and we retain 93 POD modes in the lifting so that 99.99997%

of the energy is captured. Note that T̂ is the least common multiplier of the two characteristic time scales

of the problem. The projective integrator is third-order, i.e. Jc = 3. The time interval of fine integration is

Dtf ¼ T̂=880 and the time step for projective integration is Dtc ¼ T̂=256. The computational cost of the
equation-free POD model is about 25% of that of a full-scale DNS.
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The evolutions of velocities at the history point are plotted in Fig. 9. To illustrate the closeness between

equation-free POD model and DNS results, we plot the spectrum of the streamwise velocity in Fig. 10; we

observe good agreement. In Fig. 11 (left), we plot the phase portrait of u-velocity versus v-velocity at the

history point; in Fig. 11 (right) we plot the Poincaré map corresponding to a value of u = 0.5. Again, the

equation-free POD produces results with good accuracy, compared to the DNS results.

4.4. Long-term integration

It has been demonstrated that the low-dimensional POD system obtained from Galerkin projection may

be quite inaccurate for the long-term integration (e.g., see [11] for ordinary differential equations, [3] for
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Kuramoto-Sivashinsky equation, and [39] for Navier–Stokes equations). On the other hand, the equation-

free POD model presented in this paper can overcome this difficulty because the ‘‘nonlinear Galerkin’’

equations for the POD modes are provided numerically by observing the actual fine scale dynamics. To

investigate its performance in long-term integration, we return to the periodic flow of Re = 100 and inte-
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grate the equation-free POD model for a time interval with length t = 375 ÆT 	 2250, that is equal to 375

shedding periods.

In Fig. 12, phase portraits of the first four POD modes {ak(t)} are shown. The results are obtained via

the equation-free POD model with Jf = 2, Jc = 3, Dtf = Dtc = T/32 and K = 11. On the left of Fig. 12, we

show the limit cycles from the equation-free POD simulations and those of DNS. We observe very good
agreement between the two even after long-term integration. On the right of Fig. 12 we show the asymp-

totically stable solution of the low-dimensional POD models from the Galerkin projection, along with the

‘‘correct’’ DNS results. The Galerkin POD produces clearly erroneous limit cycles. In Fig. 13, we present

the results obtained by the Galerkin-free POD model with fewer number of POD expansion modes K = 7.

The results are less accurate compared to those obtained by K = 11 in Fig. 12; assuming that the long-term

dynamics live on a manifold of dimension less or equal to 7, the reason for this difference lies most probably

in the better lifting (after projection) with 11 (rather than only 7) modes. However, the Galerkin-free model

can still capture the nature of the asymptotic states, in contrast to the failure of direct Galerkin POD, even
at higher resolution of the latter. (The asymptotically stable solution of the truncated Galerkin POD system

is obtained from AUTO, see [10]; for detailed analysis on the asymptotic behavior of Galerkin POD for

Navier–Stokes equations, see [39].)
5. Summary and discussion

In this paper, we presented an equation-free/Galerkin-free POD-assisted model for numerical simula-
tions of the long-term dynamics of incompressible flows. Consistency and accuracy analysis of the ap-

proach at appropriate limits was conducted, and numerical examples were presented to validate the

error estimates. Numerical simulations of two-dimensional flow past a circular cylinder were also pre-

sented. The present method produces accurate results while reducing the computational effort by up

to 80%, compared to the full-scale DNS. Long-term integrations are conducted to demonstrate that

the Galerkin-free POD model can capture the asymptotic state of the flow correctly; this is in sharp cons-

trast with POD-Galerkin truncations, which – even at higher number of modes – produce erroneous

asymptotic states.
One of the most important features affecting the performance of equation-free methods is the accuracy

of the lifting step – given the values of a sufficient number of observables (here, low-POD coefficients) we

need to produce initial conditions on or close to the slow manifold consistent with these observables. In this

paper we initialized with exactly zero component on the higher modes, and relied on pure direct integration

to bring us close to the slow manifold. This was sufficient in our case, and will indeed provide a good

approximation if the observation variables are ‘‘pure slow’’ variables, and the time of integration – before

we start estimating derivatives – is appropriately chosen with respect to the gap between fast and slow sys-

tem dynamics. When we have a sufficient number of observation variables to parametrize the slow mani-
fold, yet these observables have both fast and slow components, it is still possible to successfully ‘‘lift’’

(initialize close to the slow manifold) with a constrained evolution or even non-intrusively through a legacy

DNS simulator [16,12].

Clearly, the computation can benefit from adaptive step-size selection, as well as adaptive selection of the

number of POD modes used to observe the evolution of the solution; the latter corresponds to mesh adap-

tation in finite differences or finite element computations. The ‘‘computational technology’’ required for

this adaptation is the same as the one for traditional, Galerkin-based codes (i.e., refinement or coarsening

are based on a posteriori error estimates). An important quantity to estimate locally is the location of a
possible spectral gap between slow and fast dynamics of the full system; this gives us an estimate of the

number of variables required to parametrize the slow manifold, and thus an indirect indication of the num-

ber of POD modes that we need to keep in our simulation.
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Projective integration is but one of the traditional continuum numerical procedures implemented in an

equation-free context. Most other continuum procedures (e.g., fixed point computations, parametric con-

tinuation, stability and bifurcation analysis, as well as tasks like controller design and optimization) can

also be implemented. Remarkably, even reverse projective integration of highly dissipative systems on

the slow manifold can be attempted: short forward integration runs can be used to take the dynamics (pro-

jectively) backward in time [15]. Short runs of the ‘‘full DNS’’ code can be used to estimate not only the

RHS of the equation for the coarse-grained observables, but also to estimate the action of the slow Jaco-
bian of the dynamics, and so implement Krylov subspace methods (e.g. [22]). One can, thus, attempt to turn

a DNS dynamic simulator – through a computational ‘‘wrapper’’ – into a fixed point solver, capable of

finding both stable and unstable steady states, quantifying their stability and analyzing their bifurcations

(e.g., see [37,23]). We are actively pursuing these research directions for complex flows. What we presented

here shows that – beyond simple data compression and POD-Galerkin – POD modes can be used (as obser-

vation variables in a multiscale context) to accelerate DNS; in principle, they can also be used to enable

DNS simulators to become fixed point solvers, to integrate backward in time – to perform computational

tasks they have not been designed for. One of the most important points is that -for our equation-free
framework – we only need enough POD modes to observe the slow dynamics – to parametrize the slow

manifold, not to span it. This has the potential to alleviate the severe sensitivity of POD-Galerkin models

to the particular data ensemble that was used for basis function extraction. We believe that this opens many

interesting possibilities for ‘‘on-the-fly’’ reduction for complex geometry flows, and more generally, for

POD-assisted multiscale system computations.

In the current work we have considered the flow past a circular cylinder as a test problem due to the

previous experience with this flow that shows that a low-dimensional representation indeed exists, see

[28,5,8]. An important limitation of the method presented here is that it relies on the existence of a relatively
low-dimensional, attracting slow manifold, parametrized by the POD modes we retain in our procedure; as

more modes of the flow become slow the manifold becomes higher dimensional. This simplicity is lost when

such a separation of time scales is not present, e.g., in wall-bounded turbulent flows characterized by sud-

den bursts and the resulting interactions of fast and slow scales. It is not inconceivable, however, that the

simplicity might be restored when one does not study the dynamics of a single flow realization but the effec-
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tive, averaged dynamics of of appropriately selected ensembles of realizations. Such examples have been

demonstrated in kinetic Monte Carlo or Brownian Dynamics contexts, see [29,30,36]; whether such effective

descriptions may be useful for complicated transitional and turbulent flows remains to be seen.
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